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Logistic map

X — T(x"), T(x)=4x(1—x),x€]0,1]
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Lorenz 96 model (Majda-Abramov version)
Edward Norton Lorenz, 1917-2008

Lorenz96 : au

7{ (U1 — U2)Uj1 — U+ F
j:071a"'7‘j;

J=5F=-12

Figure: Statistical coherence

Figure: Sensitive dependence

(Sensitive dependence)
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Energy dissipation rate per unit mass

u+Uu-Viu+Vp = vAu+F,V.-u=0.
e = v<|Vul?>,

Energy injected at large scale,
cascaded down in the inertial range,

) dissipated at small scale
Figure: Andrey

Kolmogorov, 1903-1987 >
Us = V2e, e:% u2 >,
te = 9 = Ea
e Us
U3
= EX T

» Kolmogorov dissipation length
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Statistical Approaches

du
E_F(u), ucH

» Long time average

1 T
<P >= lim — o(v(t)) dt

T—o0 0

» Spatial averages
<o = [ o) du(v)
H

{ut, t > 0} statistical solutions



Statistical Solutions

{pt, t > 0}, % =F(v), {S(t),t>0}

» Pull-back

1o(S™(H)(E)) = m(E)
» Push-forward (¢: suitable test functional)

/ (V) djur(v) = / O(S(1)v) dpo(V)
H H

» Finite ensemble example
N N
Ho = ijavoj'(v)a Mt = ij‘sv/(t)(v)vvj(t) = S(t)Voj
j=1 j=1

mEy= > p= > p=m(S(E)

vi(t)eE Vo €S—1(E)



Liouville’s equations

Figure: Joseph Liouville, d
1809-1882 dt H

— /H< ®'(v),F(v) > du(v)

O(v) dpu(v)

® good test functionals e.g.
d)(V) = ¢((V, V4 )7 Tty (V, VN))

> (finite d)

S0V 0)+ 9 (p(V, DF(¥)) =0




Hopf’s equations

Figure: Eberhard Hopf,
1902-1983

Hopf's equation (special case of Li-
ouville type)

d

i(v.,9)
dt /H e dut(v)

/ i < F(v).g > €9 duy(v)
H




Stationary Statistical Solutions (IM)

» Invariant measure (IM) u € PM(H)
WS (t)(E)) = n(E),vt =2 0
» Stationary statistical solutions: essentially

/ < F(v),®'(v) > dpu(v) = 0,V
H

» Example:
do

p— _2 —_— =
o r(1 r)’dt 1

]
po = do, duy = 5—-d0
Iy



Figure: George David o
Birkhoff, 1884-1944 Definition

wis ergodic if u(E) =0, or 1 for all
invariant sets E.

Theorem (Birkhoff’s Ergodic
Theorem)

If u is invariant and ergodic, the

temporal and spatial averages are
equivalent, i.e.

1T B ,
lim T/o <p(8(t)u)dt—/H<p(u)du(u), :

T—o0
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» classical scheme of order m
lu(nAt) —u”|| < C(nAH)AL", C(T) =exp(aT)

» Error in approximation of long time averages

[lim sup NZ u(nAt)) — e(u™)|

N—oco

. meXP((N 4+ 1)aAt) — exp(aAt)
CII,TjiPAt exp(aAt) —1

IN

= Q0.



Classical schemes may not be suitable for approximating the
climate although they may work well for weather.

Preliminary numerics on Lorenz 96 (Majda-Abramov version)
indicates various regimes with forward Euler: blow-up, severe
numerical artifacts in pdf with relatively small time step
similar issue with SDE (Majda, E, Liu)

What schemes ensure the convergence of stationary (long time)
statistical properties?
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Dissipative system

Definition
A dynamical system {S(t),t > 0} on a phase space H is called
dissipative if there exists a global attractor .4 such that

» A is invariant under S(t)
» Ais compact.
» A attracts all bounded set Bin H, i.e.,
lim dist(S(f)B,.A) = 0.

t—oo



Dissipative system

Definition
A dynamical system {S(t),t > 0} on a phase space H is called
dissipative if there exists a global attractor .4 such that

» A is invariant under S(t)
» Ais compact.
» A attracts all bounded set Bin H, i.e.,
lim dist(S(f)B,.A) = 0.

t—oo

» ZM (the set of all invariant measures) is a convex compact set
(with respect to the weak topology)

> suppp C A, Vu € IM



Discrete dynamical system Sy approximate dissipative dynamical
system S(t),t > 0.
Theorem (Abstract result, W. (Math. Comp. 2010))
Assume

1. (Uniform dissipativity) K = Uy <, Ak: pre-compact

2. (Finite time uniform convergence)
SUPye Ay, nkelio, 1] ||Sfu — S(nk)u|| — 0, ask — 0.

3. (Uniform continuity of the continuous system)
lims_, 7+ sUpyck [|S(HHu — S(T*)uf| = 0.
Then

Remark 1. Possible deficiency with fully explicit (stability) or fully
implicit (unique solvability). 2. Classical energy stability is insufficient



Discrete dynamical system Sy approximate dissipative dynamical
system S(t),t > 0.
Theorem (Abstract result, W. (Math. Comp. 2010))
Assume

1. (Uniform dissipativity) K = Uy <, Ak: pre-compact

2. (Finite time uniform convergence)
SUPye Ay, nkelio, 1] ||Sfu — S(nk)u|| — 0, ask — 0.

3. (Uniform continuity of the continuous system)
lims_, 7+ sUpyck [|S(HHu — S(T*)uf| = 0.
Then
1. (Conv. of stationary stat. prop.)

Rk — [y [k EIMK,,U/ €IM.

2. (Conv. of attractors)

llano dist(Ax, A) = 0.

Remark 1. Possible deficiency with fully explicit (stability) or fully
implicit (unique solvability). 2. Classical energy stability is insufficient



The infinite Prandtl number model

>

%(%+(u-V)u)+Vp = Au+ RakT, V-u=0, u|;—1=0,
oT
— VT = AT.
ot +u-Vv
>
Vp = Au+RakT, V-u=0, ul;—1=0,
oT
— -VT = AT.
o +u-v
» Alternative form (large Peclét number)
%+RaA“(kT)-VT:AT

» Fast advection time formulation = = Rat (multiple time scale,
optimal transport)
oT 1

— 4+ A" VT = —AT
5 A (KT)-V a



Application to oo Pr. model, Cheng&W. SINUM2008,
W.MathComp2010

oo Prandtl number model (perturbative form)

% + RaA~'(k0)- VO — RaA " (k0)sr' = AG+ 7", 0|,—01 = 0.

1 . . . .
7(2) = > cRa~'/® < z <1 — cRa '/3 essentially piecewise linear
Linear implicit scheme

9!7—}—1 _n
"fk + RaA~"(k6p) - VoIt
+Ra (A (kAT + (1 = N)07)))s7'(2)

= AT +177(2), Ae[0,1]



A linear symmetric implicit scheme(W.)

92+1 — 9;(7 1 n n —1 n /
T + RaA '(k0]) -V 4+ Ra(A~"(kK(6F)))s™'(2)

= AT 7(2),

e severe restriction on step size



A linear symmetric implicit scheme(W.)

ot —on
ka +RaA (ko)) Vo] + Ra(A~"(k(6])))sT'(2)

= AT 7(2),

e severe restriction on step size
Yet another linear scheme (Douglas-Dupont regularization)

ot — o7
S S AW 00 + RaAT (KOR) - VO + Ra (AT (K(05))sT(:

= A0 +17(2),



NSE 1st order scheme

v

2D NSE in a periodic box in streamfunction-vorticity formulation
%
ot

an efficient classical 1st order scheme

Vi Vw—vAw=f, —A) = w

v

wn+1 — " + k(Awn-H _ vlwn cw" + f”)

v

Main result (Gottlieb-Tone-Wang-W.-Wirosoetisno 2011) Long
time statistical properties of the scheme converge to that of the
2D NSE.

Alternative schemes exist

v
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Second order scheme

» BDF2AB2 scheme

3wn+1 — 4" +wnf1

ok +VE@2y =" ). V(2w - v AL = 1T,

» Dynamical system formulation

wh wn+1
o[ £ ][]



Theorem (convergence of stationary statistical properties)
Letf e I'-I;,e, be a time-independent function. Then the discrete
dynamical systems defined via the scheme is autonomous and
dissipative with non-empty set of invariant measures ZMy. Denote
P;,j = 1,2 the projection from (L?)? onto its j* coordinate. Let

{1k, k € (0, ko] } with e € TMy, Yk, be an arbitrary invariant measure
of the numerical scheme . Then each subsequence of { .} must
contain a subsubsequence (still denoted {1« }) and two invariant
measure 1i; of the NSE so that P;j.x weakly converges to y;, i.e.,

Pj*/’(‘k - Hjs k — 07

where P} 1k (S) = ux(P; '(S)), VS € B(L?).



vV v.vY

Dynamical system approach is not directly applicable.
Dissipation from the BDF2 is crucial

(V2 —2vq + Vo)2

3 1 1
Vo — 2V +7V0)V2:§(|V1|26_|V0|26)+ 4

(2 2
IVie=V-GV.G= (13, 117,11, 21")

Choice of AB2 is important
New estimate on the nonlinear term via Wente type approach
new two step Gronwall type approach

Advection term treatment in the collocation Fourier is important
in fully discretized case

Appropriate projection (combination) (V - [—E, 5 T} is also critical



Wente type estimates

Let Hg;,(sz) be the periodic Sobolev space of order m with zero
average. There exists an absolute constant C,, > 1 such that

V54 - V|-
V54 - V|| -
IV - V|2
IV - V12
IV - V|

ININ IA TN

IN

Culltll ol e
Cuwll¥ [l el ol 2,
Cwll¥llkell ol
Cull¥ll |9l e,
Cuwll¥ll el @l e,

Vi € Hpp, ¢ € Hper(Q),
vy € per,sb € L2( ),
Vi) € Hoor, ¢ € Hper(9),
Vi) € Hpor, ¢ € Hior(Q),
Vi, ¢ € per( )-



2 step discrete Gronwall

Let {g"} be a non-negative sequence. Suppose there exist constants
€>0,8>0,X€(0,1) such that

A 1-A

n Be
1+¢

g+ m,Vnz 1.

n+1<7
g _1+sg+

Then we have, for v = 11+j£2 <1,and n> 2,

g™ < ymax{g",g" ' 28},
g™ < ymax{ylTIg? 4T g! 26}

where |- | denotes the floor function (the biggest integer bounded by

).
(g~ |VI3)



fully discrete scheme

» Galerkin Fourier

3</J,'\7,+1 —4wf, n—1
2k

» Collocation Fourier

3w;\7,+1 4wl + wy” 1

2k

—*(VN(Q%V N V(2wh -

W -
A =W, j=n—1

+Vn - (VN (2YR —

n+1
—vAwy" —

,n.

TEN | (V@) T (2wl

n+1
N

wy )

)

) —vAwh =



Summary

» Statistical approach is necessary for chaotic/turbulent system
» Classical schemes may not be good for climate simulation

» Preserving dissipativity is crucial (Hale, Gunzburger, Shen,
Foias, Temam, Jolly, Titi, Stuart, Suli, Ju, Tone, Yan,...)

» Similar idea exist for Hamiltonian system (symplectic integrator),
hyperbolic conservation law (SSP, or TVD), dispersive wave
(DRP scheme), ...

» There exist "efficient" 1st and 2nd order numerical schemes
» Long way to go to reach our goal



Questions

vV V. v v v Y

Is 2nd order really better than 1st order?

What happens if we are interested in a few simple observables
only?

Selection of physical invariant measure? Noise effect? Mixing
rate and noise?

Multi-scale schemes?

Partially/weakly dissipative systems?
Generalized dynamical systems?
Non-autonomous system, seasonal effect?
Model error and uncertainty?

Linear response? Climate change?



Happy 60th Birthday!
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